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Abstract

Storage systems designers are still searching for better
methods of obtaining representative I/O workloads to drive
studies of I/O systems. Traces of production workloads are
very accurate, but inflexible and difficult to obtain. (Pri-
vacy and performance concerns discourage most system ad-
ministrators from collecting such traces and making them
available to the public.) The use of synthetic workloads ad-
dresses these limitations; however, synthetic workloads are
accurate only if they share certain key properties with the
production workload on which they are based (e.g., mean
request size, read percentage). Unfortunately, we do not
know which properties are “key” for a given workload and
storage system.

We have developed a tool, the Distiller, that automat-
ically identifies the key properties (more formally called
attribute-values) of the workload. These attribute-values
can then be used to generate a synthetic workload repre-
sentative of the production workload. This paper presents
the design and evaluation of the Distiller. We demonstrate
how the Distiller finds representative synthetic workloads
for simple artificial workloads and three production work-
load traces.

1. Introduction

The behavior of most computer systems — especially
large enterprise storage systems — is heavily dependent
upon the choice of workload. Consequently, potential stor-
age system design and configuration decisions must be eval-
uated with respect to workloads that represent how the stor-
age system will be used in a production environment.

One approach for driving storage design studies is to use
block-level storage traces from an actual storage system in
production use. As described in [11], using traces of real

storage system activity has a number of limitations: (1)
Traces are difficult to obtain, often for non-technical rea-
sons. System administrators are reluctant to permit tracing
on production systems; and, when traces are collected, it is
often time-consuming to anonymize them to protect users’
privacy. (2) Although any single trace file may not be huge,
a set of trace files listing the activity of a system over a
longer period of time (weeks or months) may occupy con-
siderable space (e.g., tens of GB), making them difficult to
store online and share easily over the Internet. (3) It is dif-
ficult to isolate and/or modify specific workload character-
istics (e.g., arrival rate or total accessed storage capacity)
of a trace. This means that traces do not support hypothet-
ical studies, such as explorations of slightly larger, busier,
burstier, or other expected future workloads.

An alternative approach is to use synthetic workloads.
Synthetic workloads are artificially generated workloads in-
tended to induce similar behavior on the underlying storage
system by preserving the properties of the target realistic
workloads on which they are based (e.g., same request in-
terarrival time distributions, request size distributions, oper-
ation mixes, and locality).

Synthetic workloads help to overcome many of the lim-
itations of production traces: (1) Synthetic workloads can
be specified using only the values of high-level attributes,
which do not contain any user-specific information, thereby
reducing privacy concerns. (2) Summarized workload at-
tributes may be considerably smaller than a complete trace,
making them easier to store and share over the Internet. (3)
Synthetic workloads may better enable hypothetical stud-
ies: adjusting the attribute-values will change the resulting
synthetic workload to approximate future workloads.

In order to be useful, a synthetic workload must be rep-
resentative of the target workload on which it is based. In
other words, it should induce similar behavior on the under-
lying storage system and lead to the same design decisions
as the target workload [9]. Unfortunately, we do not know



which attribute-values a synthetic workload must share with
the target workload in order to be representative.

Most current workload analysis and synthesis techniques
[11, 12, 13, 15, 16, 24, 25]. attempt to reproduce only one
or two important workload properties. As a result, syn-
thesizing a representative workload requires a tedious pro-
cess of searching for each of the attributes that significantly
affect storage system behavior. Furthermore, because the
set of important attributes may differ for different work-
load/storage system combinations, this process must cur-
rently be repeated for every workload and storage system
combination under study.

This paper presents our approach for automating this te-
dious process, and describes our tool, the Distiller. Begin-
ning with a trace of the target workload and a set of candi-
date attributes, the Distiller automatically determines which
attribute-values should be used to synthesize a workload
that is representative of the target. For this paper, we con-
sider two workloads to be representative when they have
similar distributions of I/O response time when replayed on
a given storage system.

We have used the Distiller to automatically find the key
attributes for several simple workloads, and three produc-
tion workloads — an email server, a transaction processing
database, and a decision support database. We show that,
for all but one of the target workloads considered, the Dis-
tiller produces a synthetic workload with a response time
distribution within 12% of the target workload’s response
time distribution.

The Distiller chooses attributes from a library of known
analysis and synthesis techniques. Should a necessary at-
tribute be missing from the set, the Distiller can identify
what I/O request parameters are measured by the missing
attribute, thus helping to guide the invention of a new anal-
ysis/synthesis technique.

The Distiller can easily incorporate new attributes as they
are discovered — either as part of this investigation, or from
other investigations described in the literature. This extensi-
bility allows the Distiller to easily evaluate new workloads
and new storage technologies (e.g., MEMS-based storage),
which may have different characteristics from known work-
loads and storage devices.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work, and Section 3 presents back-
ground and terminology. Section 4 discusses our automatic
iterative approach for choosing attributes to generate repre-
sentative synthetic workloads. Section 5 describes our ex-
perimental environment, and Section 6 presents our experi-
mental results. Section 7 presents future work and section 8
concludes.

2. Related work

The literature describes and evaluates many techniques
for generating synthetic block-level I/O workloads [11,
12, 13, 15, 16, 24, 25], file-level workloads [1, 6, 14,
22], and application-level I/Os workloads [18]. File- and
application- level synthesis techniques are important be-
cause they can be used to produce block-level workloads.
(Simply execute the synthetic file- or application-level
workload, and collect the resulting block-level trace.) Fur-
thermore, these I/O synthesis techniques are often based
on, or related to, techniques for synthesizing other types
of workloads, such as processor or network workloads
[2, 3, 4, 5, 7, 8, 9, 10, 21].

Our contribution is different: instead of presenting an-
other synthetic workload generation technique, the Distiller
leverages these existing techniques to automatically choose
the ones that are most appropriate for the target workload
and storage system. The set of current block-level analysis
and corresponding generation techniques serve as the Dis-
tiller’s “library” of candidate attributes.

Researchers have used principle component analysis
(PCA) to synthesize computational workloads (i.e., batches
of jobs) [4]. PCA is applied to reduce the number of di-
mensions of a data set. Given a large set of workloads W

with the desired performance and a set m of attribute-values
that characterize those workloads, PCA finds basis vectors
for the set of n-tuples that can best describe W . Unfor-
tunately, using PCA to identify a workload’s performance-
related attribute-values presents several challenges. First,
we would need to provide a set of workloads W with sim-
ilar performance. (This, is in some sense, the problem we
are attempting to solve.) Second, the resulting basis vec-
tors would likely be combinations of attributes (rather than
a subset of the initial set m), and may not have any intuitive
meaning.

Techniques that use PCA and/or related clustering tech-
niques to directly synthesize workloads must be designed
carefully. Many PCA techniques (especially those used
to synthesize computational workloads) assume that each
component (job) consumes a fixed amount of resources
(e.g., CPU time, I/O bandwidth, memory) each time it is
issued. This assumption does not hold in a storage context,
where the effects of spatial and temporal locality, caching,
and prefetching can make the resources consumed for an
I/O request highly variable. Thus, to use PCA and/or related
clustering techniques to synthesize I/O workloads, one must
define components to be something other than a single I/O
request.

Hong and Madhyastha have applied clustering tech-
niques to groups of I/O requests to produce a representative
arrival pattern [15, 16]; however, this approach only covers
a single aspect of the trace, without addressing the other as-
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Figure 1. Problem statement: Our goal is to auto-
matically determine which attributes are necessary
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Figure 2. The Distiller iteratively builds a set of at-
tributes that specifies a representative synthetic
workload.

pects (e.g., access pattern). Wang, et al.’s PQRS method,
which is based on the joint entropy of the location and ar-
rival time values, provides a step toward capturing multi-
ple trace characteristics simultaneously (e.g., arrival pattern
burstiness, access pattern behavior and correlations between
the two) [24]. These techniques serve as attributes in the
Distiller’s library (although, they were not needed to distill
any workloads examined in this paper).

3. Terminology

Our goal is to automatically determine which attributes
specify a synthetic workload that is representative of the tar-
get workload. Specifically, we want the synthetic and target
workloads to have similar performance when played against
the same storage system. Figure 1 illustrates this goal. In
this section, we more precisely articulate this goal by defin-
ing terminology and evaluation metrics and by describing
workload formats and target storage systems.

3.1 Storage system

We focus on block-level, disk-array-based storage systems
commonly used in enterprise environments. Disk arrays
provide a block-level I/O interface by exporting logical
units (LUs) of storage. LUs are constructed from a subset
of the array’s disks and configured using a particular RAID
layout (e.g., a RAID5 redundancy group). Each LU appears
to be a single virtual “disk” to the host accessing it. Disk
arrays also generally employ a large main memory cache to
improve performance for frequently accessed data, leading
to request response times that may vary by as much as three
orders of magnitude.

3.2 Workload

A workload for a disk array is a sequence of individual I/O
requests. Each request has four parameters:

• Location: The location parameter identifies the loca-
tion of the data in the disk array. An I/O’s location

includes both a device number (which identifies either
a physical disk, or some logical partition of the disk ar-
ray) and an address on that device. This pair can either
be presented explicitly using two values, or implicitly
with one value.

• Request Size: The request size is the number of bytes
requested by an I/O request.

• Arrival Time: The time at which a request issued is its
arrival time. Some workloads present the interarrival
time instead of the arrival time. The interarrival time
is the time elapsed since the arrival of the previous re-
quest. The choice of whether to present arrival time
or interarrival time is a matter of convenience because
each set of values can be calculated directly from the
other (assuming an “open” model).

• Operation Type: A request’s operation type is either
“read” or “write”.

Table 1 contains an example workload. In this exam-
ple, the device number and sector number of a request’s
address are combined into a single value. Table 1 also
presents the jump distance and run length for the sample
workload. These terms, defined in section 3.2.2, are used to
more clearly define several workload attributes and genera-
tion techniques.

3.2.1 Open vs. closed model

The description of a workload presented in section 3.2 is an
open model. In an open model, the exact issue time of each
request is specified. It is either relative to the beginning of
the trace (arrival time), or to the issue time of the previous
request (interarrival time).

Another common workload model is a closed model. In
a closed model, the issue time of an I/O is specified relative
to the completion time of the last synchronous I/O issued by
the current thread. Thus, this model includes the CPU time
between I/O requests issued by the same thread.



Table 1. Example workload and closely related values.

I/O Workload Closely Related Values
I/O Operation Location Request Arrival Interarrival Jump Run
Number Type Size Time Time Distance Length
1 Read 1024 8192 0 NA NA 1
2 Read 9216 8192 .001 .001 0 2
3 Read 17408 1024 .003 .002 0 3
4 Write 33792 8192 .004 .001 15360 1
5 Write 18432 2048 .009 .005 -23552 1
6 Read 20480 4096 2.66 2.57 0 2
7 Write 19456 1024 2.69 .003 -5120 1
8 Write 51200 65536 7.87 5.18 32768 1

In general, closed models are more accurate than open
models. Consider a set of I/O requests that are issued syn-
chronously by a single thread with no processing time be-
tween. The issue time of each I/O depends upon the re-
sponse time of the previous I/O. The open model does not
reflect this dependency.

For this paper, we will use only the open model.

3.2.2 Descriptive terms

We define here several common terms that are useful for
describing a workload and its properties.

Run: A run is a sequence of I/Os for which the first byte
of each I/O immediately follows the last byte of the previous
I/O. For example, I/Os 1 - 3 in table 1 form a run of length
3. I/Os 5 - 6 form a run of length 2.

Jump distance: The jump distance between two I/Os
is the distance in the location address space from the end of
one I/O to the beginning of the next. For example, in table 1,
the jump distance between I/Os 3 and 4 is 33792−(17408+
1024) = 15360. The jump distance between I/Os 4 and 5 is
18432 − (33792 + 8192) = −23552. Two successive I/Os
in a run (e.g., I/Os 1 and 2) have a jump distance of 0.

Burstiness: The arrival pattern of a workload is consid-
ered to be bursty if there some are periods of time in which
many I/O requests are made, and other periods of time in
which very few, if any, requests are made.

Footprint: A workload’s footprint is the set of location
values used at least once by a workload. The footprint of
the workload in table 1 is

[1024, 18432) [19456, 24576)
[33792, 41984) [51200, 116736)

Notice that not every location accessed is the beginning
location of an I/O. Location 2048 is accessed by the first
I/O.

Table 2. Distribution of request size for example
workload

Request Number Fraction
size of I/Os of I/Os
1024 2 .25
2048 1 .125
4096 1 .125
8192 3 .375
65536 1 .125

3.3 Attributes and attribute-values

An attribute is a measurement of a workload characteris-
tic (e.g., mean request size, read percentage, or distribution
of location value.) An attribute-value is an attribute paired
with the quantification of that attribute for a specific work-
load (e.g., a mean request size of 8KB, or a read percentage
of 68%). If one views an attribute as a function, f , then an
attribute-value is the pair (f, f(x)) for some workload trace
x.

Attributes describe a measurement of the workload it-
self, rather than the response of the underlying storage sys-
tem when subjected to the workload. For example, “mean
response time” is not a valid attribute because computing
the mean response time requires knowledge of the specific
storage system (and storage system configuration) on which
the trace will be executed. Furthermore, attributes must be
fully defined. For example, “locality” and “burstiness” are
not valid attributes because there are many different ways
to quantify locality and burstiness. In contrast, the Hurst
parameter of interarrival times is a valid attribute.

The remainder of this section discusses several useful at-
tributes.

Empirical distribution: We use the term empirical dis-
tribution to refer to the actual distribution of values for some
I/O request parameter. For example, the example work-
load’s distribution of request size is shown in table 2. In



Table 3. Sample transition matrix for operation type

read write
read .75 .25
write .20 .80

contrast, many people will assume the parameter values fol-
low some implicit distribution (e.g., a normal or Poisson
distribution) and measure only the mean and standard dis-
tribution of the parameter in question.

In addition to measuring the distribution of values for a
single request parameter, we can also measure the empiri-
cal distribution of tuples of I/O request parameters. For ex-
ample, we can measure the distribution of (operation type,
location) pairs. Such distributions are often called joint dis-
tributions.

Conditional distribution: An empirical distribution
measures a request parameter’s distribution of values over
all of a workload’s requests. We can instead measure the
distribution of values for only those I/Os that meet a speci-
fied condition. For example, we can calculate separate dis-
tributions of location for read requests and write requests.
Likewise, we can partition the range of locations into 10
states, then calculate separate distributions of location val-
ues for each state. We call the parameter being measured the
dependent parameter; the parameter on which the condition
is based is the independent parameter. In the first case, lo-
cation is the dependent parameter, and operation type is the
independent parameter. In the second case, location is both
the dependent and independent parameter. As with empir-
ical distributions, the distributions measured can be joint
distributions. Similarly, the independent parameter may a
tuple of parameter values.

State transition matrix: A state transition matrix takes
a partition of an I/O parameter’s range into states and, for
each pair of states (x, y), lists the probability that an I/O re-
quest taking on a value corresponding to state x is followed
by a request taking on a value corresponding to state y. The
Table 3 shows that the probability an I/O request is a read
is 75% if the previous request was a read, and 20% if the
previous request was a write.

The states for a transition matrix can be defined in any
arbitrary manner. One obvious technique is to assign each
value in the request parameter’s range to a unique state.
This works well for operation type because there are only
two states (read and write); however, because the size of the
matrix is quadratic in the number of states, this technique is
rarely used to study the other request parameters.

For our research, we usually divide a parameter’s range
into states according to percentiles. For example, we parti-
tion the range of location values into 4 states as follows:

• State 0: locations below the 25th percentile

• State 1: locations between the 25th and 50th percentile

• State 2: locations between the 50th and 75th percentile

• State 3: locations above the 75th percentile

This method produces a set of states for which there are
an equal number of I/Os corresponding to each state. After
testing several different techniques, we have found this one
to be most useful in practice.

The states can also be defined to be tuples of parameter
values. These tuples may be values for different parameters
of the same I/O request (e.g., (operation type, location)),
or values from successive I/O requests (e.g., (previous lo-
cation value, current location value)). When specifying a
transition matrix based on tuples, one must be mindful of
the total number of states, as it grows exponentially with
the dimension of the tuple.

Jump distance: This is simply the empirically observed
distribution of jump distances between adjacent I/Os. Jump
distance can serve as either a dependent or independent pa-
rameter for both transition matrices and conditional distri-
butions.

Run count: This is simply the empirically observed dis-
tribution of run lengths. Notice a workload may contain
fewer runs than I/Os because each run comprises several
I/Os. As with jump distance, run count can serve as either a
dependent or independent parameter for both transition ma-
trices and conditional distributions.

Jump distance within state: The jump distance ana-
lyzer calculates jump distance as the difference between the
beginning of the current request and the end of the previous
request. Jump distance within state calculates the jump dis-
tance between the beginning of the current request, and the
end of the most recent request corresponding to the same
state as the current request. For example, consider the fol-
lowing sequence of locations: 10, 11, 12, 20, 21, 13, 22, 14,
23, 24, 15. Assume each request size is 1 unit, and define
states [10, 19] and [20, 29]. The jump distance within state
for location 22 would be 0, because the previous location in
state [20, 29] is 21.

Run count within state: The run count analyzer con-
siders only runs of strictly sequential I/Os. The run count
within state analyzer looks to the previous location in the
same state to determine the length of a run. In the previous
example, this analyzer would find two runs: 10, 11, 12, 13,
14, 15; and 20, 21, 22, 23, 24, 25. Notice that for run count
within state to work as intended, the runs must lie within
different states.

Markov model: We found that, in practice, many use-
ful attributes fit a single template based on the conditional
distribution and Markov transition matrix. This template
requires four parameters:



1. the dependent parameter, d: the request parameter(s)1

being measured

2. the independent parameter, i: the request
parameter(s)1 on which the states are based;

3. the number of states, s, used to express the independent
parameter; and

4. the history h: the number of previous I/Os considered

This template specifies a set of s states based on the h

most recent independent parameters2 . We then generate a
conditional distribution of the dependent parameter based
on the defined states. We can also optionally generate the
Markov transition matrix for the same set of states. To-
gether the conditional distribution and Markov transition
matrix form a Markov model. (Notice that when h > 1,
each Markov state does not correspond directly to a single
I/O request.)

3.4 Evaluation criteria

Evaluation criteria: We can determine behavioral simi-
larity by considering a variety of different behaviors (re-
sponse time, throughput, power consumption, etc.). The
similarity of each behavior can be quantified using many
different metrics. For example, we can compare distribu-
tions of response time using root mean square distance or
the Kolmogorov-Smirnov test. The design of the Distiller is
independent of the performance metric and similarity mea-
sure chosen.

In this paper, the disk array behavior in question is the re-
sponse time distribution: the Distiller’s synthetic workload
should maintain the same response time distribution as the
target workload when both are played against the same stor-
age system. Our similarity metric is the demerit figure [20].
The demerit figure is the root mean square of the horizontal
distance between the response time cumulative distribution
functions (CDFs) for the synthetic and target workloads.
We will present the demerit figure in relative terms, as a
percentage of the mean response time of the target work-
load.

A synthetic workload that perfectly represents the tar-
get workload trace has a demerit figure of 0%. However,
due to various experimental errors, it is difficult to achieve
identical performance. Ganger distinguishes between syn-
thesis error, due to the different synthesis techniques, and
randomness error, the error of a single synthesis technique

1The dependent and independent parameters can be tuples of I/O re-
quest parameters, or even other attributes (such as jump distance or run
count).

2In practice, we use only the aforementioned “percentile” method;
however, the method of defining s states could be viewed as fifth parameter
to this template

using different random seeds [11]. Because we are playing
requests against a real storage environment, we may also
experience replay error: the experimental error due to non-
determinism in the disk array and host operating system.
Our experiments indicate that replay error can be as high
as 10%; we therefore set our target at 12%, allowing for an
additional 2% synthesis error and randomness error.

4. Our approach

In this section, we present our iterative approach for de-
termining which attributes are necessary for synthesizing a
representative I/O workload. This approach is embodied in
a tool we call the Distiller.

At a high level, the Distiller iteratively builds a list of
“key” attributes. During each iteration, the Distiller identi-
fies one additional key attribute, adds it to the list, then tests
the representativeness of the synthetic workload specified
by the current list of key attributes. This loop (shown in
Figure 2) continues until either (1) the difference between
the performance of the synthetic and target workloads is be-
low some user-specified threshold, or (2) the Distiller deter-
mines that no set of attributes in the library will specify a
representative synthetic workload.

Running Email example: To make the concepts more
concrete, we will use a running example to illustrate
the Distiller’s operation on a real production workload.
Progress will be described in each section, and the results
summarized in Table 8.

The target workload for this example is a 900-second
trace of the workload created by the OpenMail email ap-
plication. For simplicity, we will examine only one LU.
The complete workload is described in more detail in [19].
Our baseline trace contains 19,769 I/Os, with an average
request rate of 22 I/Os per second, and an average through-
put of 164 KB/s. The workload contains highly randomized
accesses using small requests that are mostly (72%) writes.
Over 90% of the requests have request sizes of 8 KB or less;
almost 50% are exactly 8 KB. The meta-data portion of the
logical volume is frequently accessed, while the email mes-
sage (i.e., data) portion of the volume does not exhibit the
same temporal locality.

4.1 Initial attribute list

The Distiller’s first step is to generate a synthetic workload
based on a set of empirical distributions of values for the
four I/O request parameters. We start with these explicit
distributions because implicit distributions (e.g., normal or
Poisson) have been shown to be inaccurate [11].

Running Email example: Figure 3 shows the response
time distributions for the initial synthetic workload and the
target workload, which result in a demerit figure of 65%.
Note the log scale on the x-axis. Given that the demerit
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figure is larger than the threshold of 12%, the Distiller must
search for additional attributes.

4.2 Choosing an attribute group

Because the time to evaluate a synthetic workload’s re-
sponse time distribution is proportional to the length of the
target workload, the Distiller should evaluate attributes in
an intelligent order. Instead of evaluating attributes indi-
vidually in an arbitrary order, the Distiller estimates the
maximum potential benefit of an entire group of related at-
tributes. Each group of related attributes captures a par-
ticular relationship within a single workload parameter or
between multiple parameters. Once the Distiller determines
which group holds the most potential for improvement, it
can focus on finding the appropriate attribute to capture that
relationship.

We define an attribute group as a set of attributes whose
values are calculated using the same set of I/O request pa-
rameters (and thus capture information about the same re-
lationship). For example, the {interarrival time} attribute
group contains those attributes that measure only the in-
terarrival times of different requests (e.g., mean interarrival
time, the Hurst parameter). The {location, operation type}
attribute group contains those attributes that measure the re-
lationship between requests’ locations and operation types
(e.g., separate distributions of location values for read and
write requests). All possible combinations of parameter re-
lationships result in a total of fifteen attribute groups. By
definition, each attribute is a member of exactly one at-
tribute group.

To evaluate the potential benefit of an attribute group,
the Distiller examines what happens when the relationship

captured by the attribute group is destroyed. If a synthetic
workload without the relationship under test performs sim-
ilarly to the target workload, then the attribute group (and
hence all of its member attributes) provides little or no ben-
efit. However, if performance without the relationship is
dramatically different, then the attribute group is important.
We call this approach to evaluating the importance of at-
tribute groups the subtractive method. The goal is to isolate
the contribution of the relationship represented by the at-
tribute group under test. For example, to isolate the effects
of the {request size} attribute group, we want to separate
its contribution from the contributions of {request size, op-
eration type}, {request size, location}, and {request size,
interarrival time}, as well as all three- and four-parameter
attribute groups involving request size.

We isolate a given attribute group by replacing its param-
eter values in the target trace with either an empirical dis-
tribution or a rotation of the original values. The Distiller
evaluates the potential contribution of a single-parameter at-
tribute group using both of these techniques. Table 4 pro-
vides an example application of the subtractive method for
{request size}. The left panel of the table shows the target
workload. The second panel (labeled “Empirical Request
Size”) substitutes an empirical distribution for the request
size parameter list, effectively removing all relationships
from any of the groups involving request size ({request
size}, {request size, location}, etc.). The third panel (la-
beled “Rotated Request Size”) rotates the list of request
sizes to maintain the intra-request size relationships, while
destroying relationships between request size and the other
parameters.3 The attribute group’s contribution can then be

3To rotate a list L of values, we shift the list so that the order of the
values is unchanged, but the item in position x is now in position (x +



Table 4. Examples of the subtractive method, using empirical distribution substitution and list rotations.

Target I/O Workload Empirical Rotated Rotated Rotated
Req Size Req Size Together Apart

Time Location Op Size Size Size Op Size Op Size
0.050397 6805371 W (a) 3072 (a) 4096 (g) 3072 (f) W (f) 3072 (f) W (e) 3072 (f)
0.762780 7075992 R (b) 8192 (b) 3072 (a) 4096 (g) R (g) 4096 (g) W (f) 4096 (g)
0.789718 11463669 W (c) 3072 (c) 3072 (f) 2048 (h) R (h) 2048 (h) R (g) 2048 (h)
0.792745 7051243 R (d) 1024 (d) 8192 (b) 3072 (a) W (a) 3072 (a) R (h) 3072 (a)
0.793333 11460856 W (e) 8192 (e) 1024 (d) 8192 (b) R (b) 8192 (b) W (a) 8192 (b)
0.808625 11463669 W (f) 3072 (f) 2048 (h) 3072 (c) W (c) 3072 (c) R (b) 3072 (c)
0.808976 7049580 R (g) 4096 (g) 8192 (e) 1024 (d) R (d) 1024 (d) W (c) 1024 (d)
0.809001 7050244 R (h) 2048 (h) 3072 (c) 8192 (e) W (e) 8192 (e) R (d) 8192 (e)

isolated by comparing the difference between the response
time distributions (using the demerit figure) for the empiri-
cal and the rotated workloads.

The Distiller evaluates the potential contribution of a
multi-parameter attribute group using a combination of list
rotations. First, for a parameter p, it evaluates the poten-
tial of all {p, x} relationships (where x is another param-
eter) by comparing the performance for a rotated p list to
the target workload. If the performance is sufficiently dif-
ferent, then at least one of these multi-parameter relation-
ships must be important. The Distiller then isolates the
contributions of each potential {p, x} pairing using two
synthetic workloads with different rotations. Table 4 pro-
vides an example application of the subtractive method for
{request size, operation type}. Again, the left panel repre-
sents the target workload. The fourth panel (labeled “Ro-
tated Together”) shows how request size and operation type
can be rotated together, preserving the {request size, oper-
ation type}, {request size} and {operation type} relation-
ships, while destroying the other relationships involving re-
quest size and operation type. The right panel (labeled “Ro-
tated Apart”) shows how separately rotating the two lists
further destroys the {request size, operation type} relation-
ship. The attribute group’s contribution can then be isolated
by computing the difference between the response time dis-
tributions (i.e., the demerit figure) for the “rotated together”
workload and “rotated apart” workloads.

The Distiller’s next step depends on the result of the de-
merit calculation for the isolated attribute group. If the de-
merit figure is less than the user-defined threshold, then the
potential contribution for the attribute group is small enough
that the addition of further attributes from that group is un-
warranted. Otherwise, the attribute group’s potential con-
tribution is large enough that the Distiller should determine
which attribute from the group to add to the list of key at-
tributes.

In exploring attribute groups, the Distiller first evalu-

t) mod length(L) for some constant integer t.

ates the importance of single-parameter attribute groups
(e.g., {location}, {request size}, {operation type}, and
{interarrival time}). We refer to these iterations as phase
one of the algorithm. After examining the single-parameter
attribute groups, the Distiller addresses two-parameter at-
tribute groups in phase two. Finally, if necessary, the Dis-
tiller will search for important three-parameter and four-
parameter attributes. However, we have yet to encounter
any workloads for which it is necessary to proceed beyond
phase two.

Running Email example: The Distiller begins its ex-
ploration of attribute groups by applying the subtractive
method to each single-parameter attribute group. Figure 4
shows two representative results for {request size} and
{location}. The empirical distribution and rotated work-
loads for {request size} are similar, with a demerit figure of
only 8%; thus, no additional {request size} attributes (be-
yond the default empirical distribution) are necessary. Al-
though the distributions for the two {location} workloads
look similar, the demerit figure of 15% is above our thresh-
old of 12%. Therefore, the Distiller will search for more
informative {location} attributes.

4.3 Picking an attribute

Once the Distiller has identified a promising attribute group,
it must choose a specific attribute from that group. It ex-
plores the candidate attributes in a pre-determined order and
evaluates how close each attribute comes to achieving the
potential contribution of the attribute group. The Distiller
incorporates the first eligible attribute encountered. This
first-fit criterion allows us to avoid the execution time over-
head of extra attribute evaluations.

The Distiller uses a variant of the subtractive method to
evaluate candidate attributes. It generates a synthetic work-
load by using the candidate attribute, and preserving the list
of original values for parameters not associated with the
attribute under test. The Distiller then compares this syn-
thetic workload against the synthetic workload that main-



Table 5. Candidate attributes.

Attribute Attr. Group Description

empirical Any histogram of values for this parameter obtained from the workload trace
distribution (This is the initial attribute for each parameter.)
list of values Any observed list of of values for the parameter in the target workload trace

(This is the “perfect” attribute; it is used only for evaluation/comparison purposes)
Markov model Any higher-order Markov model with n different states, corresponding to different regions of the

distribution; transition probabilities are determined empirically.
jump distance {loc, req. size} histogram of jump distances (in KB) in workload.
modified jump distance {location} Like jump distance, except jump distance is calculated from the beginning of the

previous request to the beginning of the current request.4

run count {loc, req. size} Histogram of the length of runs observed in workload.
modified run count {location} Like run count, except runs determined using only location at the beginning of requests.
Markov model using {location} Markov model using jump distance or run count.
combined attributes

tains “perfect information” for the attribute group (the “ro-
tated” workload for single-parameter attributes, and the “ro-
tated together” workload for multi-parameter attributes). If
the two workloads have similar behavior (e.g., a demerit
figure within the given threshold), the Distiller adds the at-
tribute to the list of key attributes. If the two workloads have
very different behavior, the attribute is not helpful and the
Distiller proceeds to evaluate other candidate attributes.

If the Distiller evaluates every attribute in a group and
finds none to be useful, then the library of attributes is in-
sufficient. The user then has two options: (1) manually add
more attributes to the library and re-start the Distiller; or (2)
continue with the best available attribute from the library.

4.4 Attribute library

The Distiller implements a library of attributes described in
the research literature. Table 5 describes the attributes for
which we have implemented analysis and synthesis tech-
niques.

Running Email example: Recall from our earlier ex-
ample that the Distiller had identified the {location} at-
tribute group as the most promising. To explore this group,
the Distiller first evaluates a Markov model of locations
— MM(loc, loc, 100,1). Figure 5 shows that the Markov
model-generated synthetic workload behaves very much
like a workload with the original, rotated sequence of loca-
tion values. Therefore, the Distiller adds the Markov model
of locations to its key attribute list.

4The literature traditionally defines jump distance as the distance be-
tween the end of the previous request and the beginning of the current
request. Our modified definition allows jump distance to be strictly a
{location} attribute.

4.5 Tracking progress for each iteration

After the Distiller identifies a new attribute of interest, it
evaluates the synthetic workload specified by the improved
attribute list. If the new workload is sufficiently represen-
tative, the iterative process concludes. Otherwise, the Dis-
tiller continues its loop of evaluating attribute groups and
candidate attributes.

Running Email example: Figure 6 shows the results for
the improved attribute list containing the Markov model of
location values. Because the demerit figure (54%) is still
well above the desired threshold, the Distiller continues.

4.6 Subsequent phases of Email example

After addressing each single-parameter attribute group, the
Distiller addresses the two-parameter attribute groups. Re-
call that the Distiller begins this phase by comparing the
single-parameter rotated workload for each I/O parameter
p to the original workload trace to evaluate the potential of
all {p, x} multi-parameter attributes (where x is any other
I/O parameter). It then determines whether breaking these
multi-parameter relationships has a large effect on the re-
sulting synthetic workload’s behavior.

Figure 7 illustrates this process. We see little differ-
ence in behavior when {request size, w} and {interarrival
time, x} relationships are broken; both demerit figures are
less than 5%. However, the behavior of the rotated work-
loads for operation type and location differ significantly (de-
merit figures of 50% to 60%) from that of the target work-
load. Therefore, we conclude that some {operation type, y}
attribute and some {location, z} attribute have a significant
effect on behavior. The Distiller next identifies appropriate
values for y and z by comparing the “rotated together” and
the “rotated apart” workloads, as described in Section 4.2.

In the case of operation type, the Distiller evaluates
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Figure 5. Markov model-generated location values
are representative of the target workload’s location
values, so the Distiller adds the attributes to the list
of key attributes.
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Figure 6. Although using a Markov model to choose
location values improves the accuracy of the result-
ing synthetic workload, the improved workload is still
not sufficiently representative.
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Figure 7. Inter-parameter relationships are important
for operation type and location, but not for request
size and interarrival time.
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Figure 9. The improved synthetic workload (using
separate Markov models for reads and writes) is
representative of the target Email workload.

the potential contribution of the {operation type, location},
{operation type, request size}, and {operation type, interar-
rival time} attribute groups. The high demerit figure (56%)
in Figure 8 indicates that there is an important {operation
type, location} attribute. Other experiments show that the
{operation type, request size} and {operation type, interar-
rival time} attribute groups promise little benefit.

When the Distiller has identified an important two-
parameter attribute group, it evaluates the candidate at-
tributes as described in Section 4.3. For our example, the
Distiller first evaluates separate Markov models of location
values for read requests and write requests. The resulting
synthetic workload has similar behavior to the workload
where operation type and location were rotated together.
Therefore, the Distiller adds this attribute to the list of key
attributes.

Figure 9 shows the results for the Distiller’s evaluation of
the synthetic workload specified by the improved attribute
list. Because the demerit figure (8%) is below the desired
threshold, the Distiller terminates.

5. Experimental environment

In this section, we describe our experimental software
and hardware environment.

5.1 Software environment

The Distiller is responsible for applying the various subtrac-
tive methods, running the resulting experiments, examining
the results, choosing the attribute group for improvement,
and determining which attributes should be added to the list
of important attributes. It acts as an outer loop that coordi-
nates the activities of several other software tools that help
perform these tasks.

To collect the traces described in Section 3, we use the
Measurement Interface Daemon (midaemon) kernel mea-
surement system, part of the standard HP-UX Measure-
Ware performance evaluation suite [17]. The midaemon’s
I/O trace provides information shown in table 6. From this
data, we can extract the four parameters necessary for the
workload traces (i.e., interarrival time, operation type, re-
quest size and request location), as well as the information
necessary to calculate the response time of individual I/O
requests (completion time and arrival time).

Our workload analysis tool, Rubicon, takes a workload
trace and an attribute list as input and produces a text file
containing the attribute-values that characterize the work-
load [23]. Rubicon also serves as our performance measure-
ment tool, operating in off-line mode on a trace to compute
the distribution of I/O request latencies.

Our workload generation tool takes a workload charac-
terization produced by Rubicon as input, and generates a
file containing a synthetic workload matching that charac-
terization. (See appendix A for more details.) We then use
a tool called Buttress to issue the requests to a storage de-
vice. While we are running Buttress, we also run the midae-
mon trace collection tool to generate a trace of the synthetic
workload for off-line performance analysis by Rubicon.

5.2 Hardware environment

All of the experiments presented in this paper were con-
ducted on an HP FC-60 disk array, with workloads gener-
ated on a uniprocessor HP N4000 machine with a single 440
MHz processor and 1 GB of memory. The FC-60 array is
populated with thirty 18 GB disks, spread uniformly across
six disk enclosures, for a total of 0.5 TB of storage. The
array has two redundant controllers in the same controller
structure with one 40 MB/s Ultra SCSI connection between
the controller enclosure and each of the six disk enclosures.
The array is configured with five six-disk RAID5 LUs, each
with a 16 KB stripe unit size.

The 256MB disk array cache, which is split between
the two controllers, uses a write-back management policy
backed with non-volatile RAM. Writes are considered com-
plete once the data has been placed in the cache, and then
later committed to the disk media (a process called “destag-
ing”). Normally, destaging occurs as a background task; if
the write portion of the cache fills, writes may be destaged
in the foreground, delaying the completion of further re-
quests. Thus, from the perspective of the user application,
most writes will appear as cache hits (e.g., almost “free”),
provided that the write portion of the cache is not full.

6. Experimental results

In this section, we present the results of using the Dis-
tiller to produce representative synthetic workloads for sev-



Table 6. midaemon I/O trace fields.

Field Description

arrival time the time at which the request arrived at the device driver
start time the time at which the request was issued to the I/O device
completion time the time at which the request was completed
operation type whether the request is a read or a write
device identifier the storage device being accessed by this request. In a disk-array-based

storage system, the device ID is an LU id.
address the location on the storage device accessed by this request
request size how many bytes of data are read or written

eral target workloads. We examine both artificial workloads
and production workloads. Artificial workloads are simple
workloads generated from the Distiller’s library, intended to
verify that the Distiller works correctly. Production work-
loads are workloads collected on real production enterprise
storage systems.

6.1 Artificial workloads

The Distiller will be successful only if its library contains a
sufficiently broad selection of attributes. Regardless of the
breadth of the library, we want to verify the correct oper-
ation of the Distiller’s infrastructure. To do this, we gen-
erated a set artificial workloads based on attributes in the
Distiller’s library. Because we know the Distiller’s library
contains all necessary attributes for the artificial workloads,
any failure to produce a representative synthetic workload
will indicate a bug or design flaw in the Distiller, not a a
limitation of the library.

Table 8 presents the results of applying the Distiller to
the artificial workloads in Table 7. Unless otherwise noted,
the stopping condition for each workload is a demerit figure
of 12%.

We now briefly describe each workload and the features
of the Distiller tested by that workload. (In the list that fol-
lows, the number corresponds to the workload ID shown in
Tables 7 and 8.)

W1 and W2 are simple workloads that are completely
described by the empirical distribution attributes on the ini-
tial attribute list. The Distiller stops before even entering
iteration 1 in both cases.

W3 demonstrates the Distiller’s ability to find single-
parameter attributes. The Markov models produce depen-
dencies within the sequence of request parameters, but no
inter-parameter dependencies.5

W4 shows that the Distiller can handle the temporary
degradation in the accuracy of the synthetic workload when
the addition of an important attribute does not improve the

5For demonstration purposes, we set the threshold to 7% so that the
Distiller would not terminate after iteration 3.

representativeness of the resulting synthetic workload.

When distilling a workload, the addition of an important
attribute does not necessarily produce a more representative
synthetic workload. Two (or more) important attributes may
have offsetting effects. For example, a {location} attribute
may add sequentiality and speed up the resulting synthetic
workload, while an {interarrival time} attribute added in a
later iteration may cause burstiness that slows the result-
ing synthetic workload. Consequently, the improvement in
the synthetic workload may not become apparent until after
both attributes have been added.

W5 demonstrates that the Distiller correctly chooses a
useful attribute for the chosen attribute group, without set-
tling on the first attribute it evaluates. During iteration 1, the
Distiller tests and rejects three Markov models of location,
and, instead, chooses a Markov model of jump distance.

W6 highlights the Distiller’s ability to find attributes that
describe multi-parameter correlations. In this workload,
read and write accesses are concentrated in different ar-
eas of the LU’s address space, and have different request
sizes. In addition, successive reads and successive writes
have smaller interarrival times than a read followed by a
write, or a write followed by a read. The Distiller correctly
skips over single-parameter attribute groups and finds the
appropriate multi-parameter attributes.

W7 shows that the Distiller can find a useful set of at-
tributes, even if no attribute corresponds directly to the gen-
eration techniques. Run count in this workload varies uni-
formly from 1 to 10 requests. (These runs were generated
using a special run count generator, not a Markov model.)
Even though simple Markov models can only generate runs
with an exponential distribution, such a Markov model is
sufficient to specify a representative workload. Thus, the
Distiller shows us that capturing runs is important, but that
maintaining the exact run length is not (at least for this
workload).

The evaluation of these artificial workloads highlights
two of the Distiller’s strengths. First, the Distiller prop-
erly chooses attributes that produce representative synthetic
workloads for the artificial workloads examined. (We have



Table 7. Workload parameters for target artificial workloads.

ID Location Operation Type Interarrival Time Request Size

W1 Uniform(0, 9GB) 50% reads Constant(20ms) Constant(8KB)
W2 Uniform(0, 9GB) 33% reads Exponential(20ms) Uniform(1KB, 128KB)

W3
MM(loc, loc, 4, 1)
each state 96MB

MM(op, op, 2, 1)
MM(iat, iat, 3, 1)
[.2ms, .9ms],[1ms, 5ms],250ms

MM(size, size, 4, 1)
1KB, 16KB, 64KB, 128KB

W4
MM(loc, loc, 4, 1)
each state 96MB

MM(op, op, 2, 1)
MM(iat, iat, 3, 1)
[.2ms, .9ms],[1ms, 5ms],250ms

MM(size, size, 4, 1)
1KB, 16KB, 64KB, 128KB

W5
MM(jump distance, loc, 4, 1)
98% probability of jump
length determined by location

MM(op, op, 2, 1)
MM(iat, iat, 3, 1)
[.2ms, .9ms],[1ms, 5ms],250ms

MM(size, size, 4, 1)
1KB, 16KB, 64KB, 128KB

W6
MM(loc, op, 2, 1)
[0, 64MB] 95% R, 5% W
[65MB, 10GB] 5% R, 95% W

MM(op, op, 2, 1)
MM(iat, op, 2, 2)
W, W: .6ms R, W: 100ms
W, R: 25ms R, R: 6ms

MM(iat, op, 2, 2)
W, W: 128KB R, W: 65KB
W, R: 2KB R, R: 16KB

W7
Runs of length Uniform(0,10)
[0, 64MB] 90% R, 10% W
[65MB,10GB] 10% R, 90% W

MM(op, op, 2, 1)
Four threads, each Exponential
with following means:
.03ms, .04ms, .05ms, .035ms

Constant(8KB)

Table 8. Summary of selected workload results.

ID Iter. Attr. group Attribute added Result

W1 0 empirical distributions 3%

W2 0 empirical distributions 6%

W3 0 empirical distributions 60%
1 {loc} MM(loc, loc, 100, 1) 66%
2 {op} MM(op, op, 2, 8) 42%
3 {size} MM(size, size, 100, 1) 9%
4 {iat} MM(iat, iat, 4, 3) 5%

W4 0 empirical distributions 15%
1 {loc} MM(loc, loc, 10, 2) 22%
2 {size} MM(size, size, 100, 1) 9%

Email 0 empirical distributions 65%
1 {loc} MM(loc, loc, 100, 1) 56%
2 {op, loc} MM(loc, op, 2, 1 ) 6%

OLTP 0 empirical distributions 29%
Log 1 {loc} MM(jump dist., loc, 100, 1) 6%

ID Iter. Attr. group Attribute added Result

W5 0 empirical distributions 63%
1 {loc} MM(jump dist, loc, 100, 1) 23%
2 {size} MM(size, size, 100, 1) 13%
3 {iat} MM(iat, iat, 100, 1) 11%

W6 0 empirical distributions 87%
1 {op,size} MM(size, op, 2, 1) 54%
2 {op, loc} MM(loc, op, 2, 1) 27%
3 {op, iat} MM((op,iat), (op, iat), 8, 2) 5%

W7 0 empirical distributions 78%
1 {loc} MM(jump dist, loc, 100, 1) 74%
2 {op} MM(op, op, 2, 8) 30%
3 {op, loc} MM(jump dist, (op, loc), 100, 1) 7%

OLTP 0 empirical distributions 53%
LU 1 1 {loc} MM(loc, loc, 100, 1) 34%

2 {op, loc} MM(jump dist, op, 100, 2) 13%
DSS 0 empirical distributions 68%

1 {loc} Run Count Within State 18%



also demonstrated this correctness for many other artificial
workloads, not presented here due to space considerations.)
Second, the Distiller was able to identify which attributes
were important, regardless of the techniques that actually
generated the target artificial workloads.

6.2 Production workloads

In this section, we apply the Distiller to production work-
loads. Table 8 presents a summary of the results.

Email: Section 4 presented a detailed description of the
Distiller’s operation on one LU of this workload. It chooses
a Markov model for location, which is later subsumed by
separate Markov models for location based on operation
type (i.e., {operation type, location}) to generate a final syn-
thetic workload with a demerit figure of 6%.

OLTP log: This trace was collected in 1994 while run-
ning HP’s Client/Server TPC-C-like online transaction pro-
cessing (OLTP) application at approximately 1150 transac-
tions per minute on a 100-warehouse database. This work-
load focuses on the busiest LU, where accesses are highly
sequential and write-only. The average request rate is 90
I/Os per second with an average throughput of 473KB/s.
The Distiller completes this trace in only one iteration, as
only an improved {location} attribute proves to be neces-
sary.

OLTP LU1: Accesses to the second-busiest LU in this
workload are about 70% reads, with an average request
rate of 90 I/Os per second and an average throughput of
57KB/s. A visual inspection of the target trace shows that
the access pattern tends to have groups of I/Os with similar
addresses, but no obvious pattern (e.g., sequential runs or
strides) within each group. This workload is distilled in two
iterations, using a Markov model of location, which is later
subsumed by Markov model of jump distance as a function
of operation type, resulting in a final demerit figure of 13%.

DSS: This decision support system (DSS) trace was col-
lected on an audited TPC-H system running the through-
put test (multiple simultaneous queries) on a 300 GB SF
data set. Accesses to this LU are read-only and nearly
all requests are 128 KB. The average request rate is 50
I/Os per second, with an average throughput of about 6400
KB/second. Each query generates a sequence of sequential
I/Os. Visual inspection of the trace shows that many inde-
pendent sequential streams have been interleaved together.
This pattern does not match any of the previously described
attributes in the Distiller’s library.

When given this trace, the Distiller first identifies the
need for a better {location} attribute. It then evaluates ev-
ery {location} attribute in the library and finds (as shown in
Figure 10) that they all have demerit figures of at least 80%.
Thus, the Distiller reports that the selection of {location}
attributes is insufficient and terminates.

In response, we added an analyzer called “run count
within state”. Instead of measuring jump distance from the
previous I/O (recall that a run is a sequence of I/Os with
a jump distance equal to the request size of the previous
request) this analyzer measures jump distance from the pre-
vious nearby I/O. (Here “nearby” refers to spatial locality).
Thus, this analyzer can capture sequential runs, even if sev-
eral runs are interleaved (provided that the interleaved runs
are in different areas of the LU’s address space). We re-
ran the Distiller after adding the new analyzer to its library.
The demerit figure obtained from evaluating the potential
of “run count within state” is only 17%, a great improve-
ment over the existing set of attributes. The original an final
synthetic workloads are shown in Figure 11.

The DSS workload illustrates the Distiller’s ability to
help direct the development of new attributes when neces-
sary. Because of the Distiller’s extensible structure, it is
easy to add analysis and synthesis modules for a new can-
didate attribute.

7. Ongoing and future work

In this paper, we have emphasized the ability of the Dis-
tiller to identify attributes necessary to generate represen-
tative synthetic workloads; however, this is just one piece
of our research into identifying and understanding a work-
load’s key attributes. By better understanding how a work-
load’s attributes affect disk array behavior, we hope to im-
prove our ability to obtain workloads for evaluation stud-
ies (especially synthetic workloads representative of hypo-
thetical future conditions). Furthermore, we hope that this
knowledge will aid the design of storage system hardware,
firmware, configuration policies, and analytic models. For
example, by learning precisely which attributes have the
largest effect on the performance, we may learn how to pre-
cisely identify precisely those patterns within a workload
that firmware should be tuned to handle.

Our next step is to further improve the Distiller’s library,
and carefully examine the consequences of our design de-
cisions. We first plan to add the attributes necessary to en-
able the Distiller to handle the block-level workloads gen-
erated by file servers. Next, we will examine the trade-offs
between the precision used to measure attribute (e.g., the
number of histogram bins for an empirical distribution or
number of states for a Markov model) and the representa-
tiveness of the resulting synthetic workloads. Finally, we
plan to examine the consequences of our design decisions.
For example, we will evaluate how different search algo-
rithms (e.g., choosing attributes using a first-fit vs. best-fit
metric) affect the set of attributes chosen, the representa-
tiveness of the resulting workloads, and the running time of
the Distiller.

After we have expanded the Distiller as described above,
we plan to examine the key attributes (as determined by
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Figure 11. This graph shows the performance of
the initial and final synthetic workloads based
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the Distiller) of many different workload, storage system
combinations. First, we will examine how the set of at-
tributes chosen by the Distiller changes with respect to
small changes the storage system (e.g., the prefetch length,
cache size, or LU configuration). This investigation is im-
portant, because any synthetic workload used to compare
several design decisions must be representative with respect
to all designs/configurations under consideration.

Then, we will compare the set of attributes chosen by
the Distiller for several traces of the same system taken sev-
eral years apart and determine how a workload’s set of key
attributes changes over time. Privacy concerns discourage
system administrators from collecting traces and making
them available to the public. Some administrators are will-
ing to make older traces available to the public. However,
these traces are often not representative of current work-
loads, and are, therefore, of limited use as input to evalua-
tions of modern storage systems. If the set of key attributes
remains constant over time, and the corresponding attribute-
values change predictably, we may be able to use traces of
older workloads to generate synthetic workloads that repre-
sent current workloads.

Long term future work includes improving the Distiller’s
algorithm for selecting a specific attribute once an attribute
group is chosen, proving the optimality of the attributes cho-
sen by the Distiller (i.e., that the set of attributes is as small
as possible, or that the set of attribute-values is as compact
as possible given the desired degree of accuracy), and im-
proving the quality of the hints the Distiller gives when the
library is insufficient.

Finally, we believe that the Distiller will work given any
reasonable quantification of storage system behavior (e.g.,
utilization or power consumption [26]). Furthermore, we
believe that these techniques are generalizable to other areas

of computer systems design (e.g., generation of synthetic
processor and/or memory access traces). We would like to
generate synthetic workloads with respect do different stor-
age system behaviors, and apply the Distiller to these other
domains.

8. Conclusions

This paper describes the design and evaluation of the
Distiller, a tool that automatically extracts a set of attributes
that specifies a representative synthetic I/O workload. The
tool requires no human intervention, and is therefore inex-
pensive to run.

We built the Distiller around several key design princi-
ples: (1) It builds the set of key attributes iteratively, adding
one attribute per iteration. (2) It takes a divide-and-conquer
approach, including estimating the potential benefits of at-
tribute groups, allowing it to evaluate the most important
attributes first. (3) If its library of attributes proves insuffi-
cient, the Distiller can identify what relationships must be
captured, thus helping to guide the invention of a new at-
tribute. (4) Its extensible structure facilitates the incorpora-
tion of new attributes as they become available.

We demonstrated the execution of the Distiller on both
artificial and production workloads. These examples high-
light the key ideas on which the Distiller is designed and
demonstrate that the Distiller can be an effective aid in the
development of representative synthetic I/O workloads.

A. Synthetic workload generation

The Distiller’s operation is independent of the tool used
to generate synthetic workloads. It requires only that the
generation tool be able to produce a synthetic workload with



a specified set of attribute-values. However, because syn-
thetic workload generation is often a non-trivial problem,
we discuss a few of our generation techniques in this sec-
tion.

Our synthetic workload generation tool, GenerateSRT,
coordinates the operation of several individual generators.
Each generator is responsible for reproducing a single at-
tribute. Two generators that produce values for the same
parameter will interfere with each other; therefore, a work-
load may be specified using at most one attribute from each
attribute group.

Allowing only one attribute per attribute group is not a
limitation of the generation tool; instead, it is a consequence
of the need for special algorithms to produce two attributes
simultaneously. For example the algorithm that produces
both the desired distribution of location and the desired dis-
tribution of jump distance is considerably more complicated
than the algorithms that produce these distributions individ-
ually. We make this new algorithm available to the Distiller
by defining a new attribute that measures and generates both
the distribution of location and the distribution of jump dis-
tance.

Some generators corresponding to attributes in two-
parameter attribute groups produce values for only one of
the corresponding request parameters. For example, the
generator that produces separate distributions of location for
read requests and write requests generates only location val-
ues. We can use any {operation type} generator the opera-
tion types, then use this {operation type, location} genera-
tor to produce locations based on the current operation type.
Notice, however, that not every {operation type, location}
attribute is compatible with (i.e., will not interfere with)
every {location} attribute. For example, most {location}
attributes will be incompatible with a joint distribution of
operation type and location. Each attribute includes a list
of the corresponding generator’s dependencies and restric-
tions. The Distiller is able to use this information to selects
sets of attributes that will not interfere.

The remainder of this section discusses several of our
generation techniques.

A.1 Run counts

To generate the desired distribution of run lengths, we sim-
ply choose the head and length of each run from the given
distributions. The distribution of locations that form the
head of runs may be different from the distribution of all
locations; therefore, the run length analyzer should be de-
signed accordingly. When using this method, it is possible
to specify a run that contains invalid locations. This hap-
pens so infrequently that we simply truncate these runs.

A.2 Jump distance

The simplest technique for reproducing a distribution of
jump distances is to choose an initial location, then choos-
ing successive locations based on a randomly chosen jump
distance. There are two problems with using this technique:
First, the result of the randomly chosen jump may be an
invalid (e.g., a location that is out of range for the storage
device) location. Ignoring the random draws that lead to
invalid locations will skew the resulting distribution. Sec-
ond, the resulting distribution of location values is unlikely
to match that of the target workload. (The distribution of
location values need not be part of the attribute; however, in
practice, we believe that any useful jump distance attribute
will also maintain the distribution of location.)

Our solution is to randomly draw the set of location val-
ues and the set of jump distances from the specified dis-
tributions, then find an ordering of the locations and jump
distances such that

locationi + jump distancei = locationi+1

We suspect (but have not yet proved) that an exact solution
to this problem is NP-Complete.6 Consequently, we gener-
ate an approximate solution using the greedy algorithm in
figure 12:

This algorithm will maintain the desired distribution of
location values (because only location values on the list
are chosen); however, it is not guaranteed to maintain the
distribution of jump distance. If no valid jump distances
are found for a particular location, the algorithm randomly
chooses a location from the given distribution (it does not
back-track); therefore, in pathological cases, the jump dis-
tance distribution could differ significantly from the desired
distribution. Fortunately, we have found that, in practice,
the resulting distribution is close enough to produce a rep-
resentative synthetic workload.

A.3 Markov model

The generator corresponding to the conditional distribu-
tion and transition matrix attributes discussed in section 3.3
is very straightforward. It chooses the current state, then
draws a specific value from the appropriate conditional dis-
tribution. If a transition matrix is specified, the current state
is determined by following the randomly chosen transition.
If no transition matrix is specified, then the current state is
calculated from the values of previously chosen parameters.
For example, MM(operation type, location, 100, 1) does not
require a transition matrix when the {operation type} gen-
erator is applied first.

6Furthermore, because the set of locations and jump distances are
drawn randomly from a distribution, it is possible that there is no exact
solution.



// location is a hash table of locations chosen randomly from a
// given distribution.

// jump_distance is a linked lists containing the
// set of jump distances to be used.

let jd_index := head_of_list_ptr(jump_distance);
let current_location := get_random_location(location);

while (! list_empty(location))
{

let starting_index := jd_index;
let proposed_location :=

nearest_location(current_location + get_value(jump_distance, jd_index));
while (abs(proposed_location - current_location +

get_value(jump_distance, jd_index) < threshold))
{

jd_index := get_next(jump_distance, jd_index);
if ( jd_index = starting_index )
{

proposed_location = get_random_location(location);
break;

}
}

set_location(proposed_location)
remove_from_list(jump_distance, jd_index);
remove_from_table(proposed_location);

}

Figure 12. Greedy algorithm for choosing jump distances



When using several Markov model generation tech-
niques simultaneously, one must resolve any dependences
and avoid “loops”. For example, generating a workload
based on the MM(operation type, location, 1, 1) attribute
requires some means of generating operation type (e.g.,
MM(operation type, operation type, 1,5) or a simple read
percentage). Circular dependencies such as MM(operation
type location, 1,1) and MM(location, operation type, 1,1)
will cause the workload generator to fail. The Distiller au-
tomatically resolves all dependencies and dependencies.

Similar techniques can be used to generate distributions
of jump distance, run length, and head-of-run locations that
depend on other parameters.

A.4 Run count within state

To generate a workload with the specified “run count within
state” attribute, we separately generate the sequence of lo-
cations for each state. We then interleave these separate
streams of locations according to a Markov transition ma-
trix of location.

A.5 Jump distance within state

To generate a workload with the specified “jump distance
within state” attribute, we separately generate the sequence
of locations for each state. We then interleave these sepa-
rate streams of locations according to a Markov transition
matrix of location.
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